Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Selvi Karaca, ${ }^{\text {a }}$ Hasan Küçükbay, ${ }^{\text {b }}$ Ülkü Yılmaz ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.074$
$w R$ factor $=0.183$
Data-to-parameter ratio $=12.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Mercapto- N -phenylformimidoyl-1-ethyl-3-(2-morpholinoethyl)benzimidazolinium inner salt

In the title compound \{alternative name: [1-ethyl-3-(2-morpholinoethyl)benzimidazoliumyl](phenylimino)methanethiolate\}, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}$, the morpholine ring has a chair conformation. The dihedral angle between the benzimidazole ring system and the phenyl ring is $0.5(2)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

Electron-rich olefins, especially tetraaminoethylenes, are highly reactive compounds. They have been used as powerful reducing agents (Lappert, 1988), sources of carbene transition metal complexes (Çetinkaya et al., 1994; Küçükbay et al., 1996), and catalysts for acyloin type $\mathrm{C}-\mathrm{C}$ coupling reactions (Çetinkaya \& Küçükbay, 1995). They have an extensive organic chemistry; in particular, electron-rich olefins that contain imidazolidine or benzothiazolidine groups have long been known, but there are a limited number of studies of electron-rich olefins contain benzimidazolidine groups. Elec-tron-rich olefins react with phenyl isothiocyanate in a 1:2 molar ratio to yield stable dipoles (Hocker \& Merten, 1972). The objective of the present study was to elucidate the crystal structure of the title compound, (2), and compare it with those of related benzimidazole derivatives reported previously.

The molecular structure of (2) is shown in Fig. 1 and selected bond lengths and angles are given in Table 2. The S $1-\mathrm{C} 10$ bond length of 1.701 (4) \AA compares with the value of 1.6933 (19) \AA in the similar structure of mercapto- N -phenylformimidoyl-1-methyl-3-(2-phenyl-
ethyl)benzimidazolinium inner salt (Öztürk et al., 2004). All geometric parameters are comparable to those reported for similar structures (Öztürk et al., 2003, 2004; Akkurt et al., 2004; Allen et al., 1987).

The benzimidazole ring system of (2) is planar, with maximum deviations of -0.017 (6) and 0.020 (5) \AA for atoms C4 and C6, respectively. The dihedral angle between the leastsquares planes of the benzimidazole ring system (N1/N2/C1$\mathrm{C} 6)$ and the phenyl ring $(\mathrm{C} 11-\mathrm{C} 16)$ is $0.5(2)^{\circ}$. The morpholine ring adopts a chair conformation [puckering parameters: $\mathrm{Q}_{\mathrm{T}}=$ 0.570 (5) $\AA, \theta=1.8(5)^{\circ}$ and $\varphi=162^{\circ}$; Cremer \& Pople, 1975].

The crystal structure of (2) is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Fig. 2).

Received 20 July 2005
Accepted 3 August 2005
Online 12 August 2005

A plot of the molecule of (2), showing the atom-numbering scheme and 30% probability displacement ellipsoids

View of the packing and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (dashed lines) of (2). The symmetry code is as in Table 2.

Experimental

To a solution of bis[1-ethyl-3-(2-morpholinoethyl)benzimidazolidine-2-ylidene], (1) $(0.5 \mathrm{~g}, 0.97 \mathrm{mmol})$, in toluene $(10 \mathrm{ml})$ was added PhNCS ($0.3 \mathrm{ml}, 2.49 \mathrm{mmol}$). When the mixture was stirred at room temperature, an exothermic reaction soon took place. All volatile materials were then removed in vacuo and the yellow crude product was crystallized from ethanol (yield: $0.62 \mathrm{~g}, 82 \%$; m.p. $383-384 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.6\left(t,-\mathrm{CH}_{2}-\mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.5\left(s\right.$, morpholine $-\mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{2}-, 4 \mathrm{H}\right), 3.0\left(q,-\mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 3.6\left(s\right.$, morpholine $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$, $4 \mathrm{H}), 4.6\left(m, \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}, 4 \mathrm{H}\right), 7.0-7.7(m, \mathrm{Ar}-\mathrm{H}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.55,41.25,43.52,53.83,56.96,66.86,112.44$,
112.88, 122.52, 123.96, 126.16, 129.90, 130.13, 130.90, 149.88, 150.33, 165.91. Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}$: C 67.01, H 6.60, N 14.21, S 8.12\%; found: C 66.80, H 6.57, N 13.87, S 8.37%.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}$
$M_{r}=394.54$
Triclinic, $P \overline{1}$
$a=8.9037$ (16) A
$b=9.1916(15) \AA$
$c=13.950(2) \AA$
$\alpha=105.927$ (12) ${ }^{\circ}$
$\beta=91.443$ (13) ${ }^{\circ}$
$\gamma=110.871(14)^{\circ}$
$V=1016.2(3) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.289 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7037
reflections
$\theta=2.5-27.1^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colorless
$0.54 \times 0.36 \times 0.11 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: refineme from ΔF
(XABS2; Parkin et al., 1968)
$T_{\text {min }}=0.909, T_{\text {max }}=0.980$
4337 measured reflections

Refinement

Refinement on F^{2}
3213 independent reflections
1957 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.000$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.183$
$S=1.01$
3213 reflections
254 parameters

H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0925 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

S1-C10	1.701 (4)	N2-C9	1.356 (5)
O1-C20	1.430 (6)	N2-C17	1.460 (6)
O1-C21	1.420 (6)	N3-C10	1.302 (6)
N1-C6	1.401 (5)	N3-C11	1.426 (6)
N1-C7	1.494 (6)	N4-C18	1.470 (7)
N1-C9	1.303 (6)	N4-C19	1.465 (6)
N2-C1	1.383 (5)	N4-C22	1.468 (7)
C20-O1-C21	108.9 (4)	N1-C7-C8	109.9 (4)
C6-N1-C7	123.5 (4)	N1-C9-N2	109.7 (3)
C6-N1-C9	110.2 (3)	N1-C9-C10	126.2 (3)
C7-N1-C9	126.2 (3)	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	124.1 (4)
C1-N2-C9	107.8 (4)	S1-C10-N3	134.3 (3)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 17$	126.9 (4)	S1-C10-C9	114.9 (3)
C9-N2-C17	125.2 (4)	N3-C10-C9	110.8 (4)
C10-N3-C11	119.8 (4)	N3-C11-C12	122.4 (4)
C18-N4-C19	111.4 (4)	N3-C11-C16	117.1 (4)
C18-N4-C22	109.3 (4)	N2-C17-C18	114.2 (4)
C19-N4-C22	108.1 (4)	N4-C18-C17	115.2 (4)
N2-C1-C2	131.6 (4)	N4-C19-C20	110.2 (4)
N2-C1-C6	107.5 (3)	O1-C20-C19	112.0 (4)
N1-C6-C1	104.7 (3)	O1-C21-C22	112.7 (4)
N1-C6-C5	132.1 (4)	N4-C22-C21	110.3 (4)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.57	$3.363(7)$	144

Symmetry code: (i) $-x+1,-y+1,-z+1$.

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. The crystal was twinned by a twofold rotation axis perpendicular to (001). Reflection data were measured for the two twin domains, scaled and combined together, but overlapping reflections could not be satisfactorily measured and were discarded, leading to a data completeness of only slightly over 80%.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). HK and ÜY thank Ínönü University (grant No. 2005/36) for financial support for this study.

References

Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o219-o221.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C. Guagliardi, A., Moliterni, A. G. G ., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Çetinkaya, E., Hitchcock, P. B., Küçükbay, H., Lappert, M. F. \& Al-Juaid, S. (1994). J. Organomet. Chem. 481, 89-95.

Çetinkaya, E, \& Küçükbay, H. (1995). Turk. J. Chem. 19, 24-30.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hocker, J. \& Merten, R. (1972). Angew. Chem. Int. Ed. Engl. 11, 964-973.
Küçükbay, H., Çetinkaya, B., Guesmi, S. \& Dixneuf, P. H. (1996). Organometallics, 15, 2434-2439.
Lappert, M. F. (1988). J. Organomet. Chem. 358, 185-214.
Öztürk, S., Akkurt, M., Küçükbay, H., Okuyucu, N. \& Fun, H.-K. (2003). Acta Cryst. E59, o1014-o1016.
Öztürk, S., Akkurt, M., Küçükbay, H., Orhan E. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o936-o938.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

